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PREFACE 

This report describes a comprehensive way of looking at and inter- 
preting the outputs of a Dyna-METRIC type model. Considerable attention 
is given to both technical and calculational considerations. The report 
is intended primarily for analysts who are already broadly familiar with 
the underlying theory and computational approach or for PACAF staff 
members who have occasion to use the model outputs. 

This focus may make it difficult for a nontechnical reader to get 
through. Nevertheless, for those who want to use this report as a primer 
on how to read and understand the model results contained in the matrices, 
it will suffice. The reader may ignore the technical portions and con- 
centrate just on the ones that describe the outputs and their interpre- 
tation, which is easy to do. The calculational framework is only briefly 
described in the main body of the report, and the more technical portions 
are relegated to appendices. 

For ease of reference, this report is published in two volumes: 
(1) descriptive text and (2) input and output data. For those already 
familiar with Dyna-METRIC concepts, the way to read the matrices will be 
almost obvious from their layout. The data, however, have been chosen to 
illustrate many not-so-obvious points and the text brings these out. Those 
insights are important in developing an understanding of or ability to 
interpret the model outputs. 

This report is one of a series related to calculating and interpreting 
the impact of the availability and management of spare parts in tactical 
fighter squadrons. 

m 
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I.    Overview of the Supply Model 

In the body of this note we describe matrix presentations that show 

outputs from a dynamic demand-repair logistics model  of spare parts 
availability.    The model developed at PACAF is called "Vector."   An 
alternate model  based on the same mathematical underpinnings has been devel- 
oped by Rand and given the name "Dyna-METRIC" (DM).    A brief explanation 
follows for those not familiar with the models. 

The aircraft spare parts which are the subjects of the models are 
those that can be removed and replaced without extraordinary trouble and 
also can be repaired and thus reused.    They are referred to as Line 
Replaceable Units or LRUs.    We may also consider the subunits used to 
repair LRUs, the so-called Shop Replaceable Units or SRUs. 

Both Vector and DM are dynamic models because they permit a flying 
program (i.e., demand for parts) which is a function of time and they 
can handle "surge" flying. 

Consider a single part type designated by a National Stock Number (NSN) 
and characterized by data giving: 

• Average demands per flying hour 

• Probability of base repair 

t   Repair cycle time in base repair 

t   Probability of intermediate-level repair at, say, PACAF's 
Consolidated Intermediate Repair Facility (CIRF) 

• Administrative and round-trip travel  time to the CIRF 

• Depot repair cycle time 

• Quantity per Aircraft (QPA); the quantity of this part type 
(NSN) found on any aircraft 

1- 



The above data permit a characterization of the stochastic demand and repair 

processes as outlined schematically in figure 1 below. 
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Figure 1 

A flying unit is characterized in Vector by the flying program, 

not essentially by the number of flyable aircraft. The flying program 

determines* in effect, the spare part demands per unit time of each NSN. 

As is commmonly done, we assume that breaks occur as a linear function 

of flying hours. This point is arguable, but the consequences are not 

germane to this report. The other factors determine the time the part 

spends in one or another of the repair loops. 

Although we define the input data in terms of averages, we are "^^v^j 

concerned with the random fluctuations that occur in both numbers of 



demands and repair loop times. Certain reasonable assumptions are made 

concerning underlying statistical distributions which permit probability 

statements to be made about the statistical fluctuations of parts (by HSU) 

in the repair process. Of the underlying assumptions necessary to the 

mathematical derivations, the dynamic Palm's Theorem (developed by Craw- 

ford at PACAF/OA and by Hillestadt and Carrillo at Rand) says that the 

number of parts in the repair line have a Poisson distribution and tells 

us how to calculate the expected value of "parts in repair." These two 

statements contain all the information that can be wrung from the data. 

All else is elaboration and interpretation, but that is not a trivial 

process. This report is really about "how to understand what the calcu- 

lations mean." 

The primary objective of the model is to evaluate a stock asset 

position against a flying program or perhaps vice versa. This is accom- 

plished by computing the statistical probabilities that the number of 

parts in repair exceed the number in stock asset for each NSN in the list 

of important LRUs. Each such occurrence leads to a "hole" in an air- 

craft and the hole persists until a part returns after being repaired to 

fill it. Any aircraft with holes is considered to be in Not-Mission- 

Capable-Supply (NMCS) status. 

The data for each and every NSN of interest are run through the 

computational process to produce probabilities for each of 0, 1, 2, etc, 

stock shortages, i.e., holes. Using these probabilities, we can then 

calculate and display for discrete points in time: 

• p-j(k), the probability (for the i^'^ NSN) of k shortages 

• EBOj, average shortages for the i^^  NSN 

• SL, additive stock required to make p-j(0)>_ .99 

• EBO, sum of average shortages over all parts 



• P(NMCS=k), the probability that NMCS=k for 100% canning 

• P(Ho1es=k), the probability that total holes = k 

Full, or 100% canning referred to above means consolidating holes to 

the fewest possible number of aircraft. The fewest number of NMCS aircraft 

under 100% canning is determined by that NSN where number of holes (divided 

by Quantity Per Aircraft) is largest at the given time. The other extreme 

would be no cannibalization. In this situation the hole remains where 

it occurred until a part is returned from repair. A no-cann policy has 

the potential of creating so many NMCS aircraft that the unit cannot 

meet its flying program. Both policies are too extreme for normal peace- 

time operations; the pragmatic policy lies somewhere in between. Neverthe- 

less, the extreme ones are useful boundary cases in analyzing the fleet 

condition. 



II. The Structure and Arithmetics of the "Vector" Model-- 

Introduction 

A Dyna-METRIC type model manipulates a large amount of demand and 

repair information for each member of a set of NSNs. The computational 

results are ultimately reduced to a highly condensed form: the "expected 

number in repair at time t for part type i," denoted by XjCt). Once 

\^{t)  has been calculated, the entire story is in hand — we then know 

what Dyna-METRIC has to say about the input data. Our problem from 

that point on is merely to interpret the meaning of the X.i(t). 

The interpretation of such a "rich" variable, however, is not trivi-. 

ally simple. The present output from RAND's Dyna-METRIC computer model 

does not show the \,-(t) explicitly. Rather, it hints at them by por- 

traying some of the consequences. RAND unquestionably made such a choice 

when developing the computer program because the model needed to span 

a wide range of possible uses at many locations, each with different 

interests. The choice was indeed reasonable for situations of interest 

to, say, an Air Logistics Center where calculations would span many 

different bases. If great detail were provided in the printouts, the 

amount of paper would be overwhelming. 

Here in PACAF, however, our interests usually focus on one base or 

one flying unit. For that situation, we have come to believe that a 

total exposure of the X^it)  leads to a much clearer perception of their 

consequences and what is happening in a dynamic logistics system than 

does piecemeal information. Toward that end, we have developed easy-to- 

comprehend matrix presentations of the \-j(t) and their consequences. 

Computationally, the integral form of x^Ct), which is at the heart 

of time-dependent pipeline calculations, is replaced by a discrete sum 

in the realization of the theory we call the "Vector" model. Within the 

accuracy boundaries imposed on us by the available data, the sum is 

equivalent to the integral. As will be seen, using a discrete summation 



permits an easy calculation of Xi(t) and also pemiits us to look at a 

variety of demand functions, allied to different sortie-rate regimes, and a 

variety of repair functions.    We also find it easy to explore many differ- 

ent time-dependent stock optionso 

The Convolution Integral '  ' 

In the illustrations that follow, we consider only simple repair 

loops—those in which the many-server assumption is valid and indenture 

relationships are not considered.    Such complexities can be added, as 

required, in the same way they are treated in Dyna-METRIC. 

Given that the input information describing the demand and repair 

processes are available, the actual calculation of x-i(t)  is straight- 

forward.    Following the notation of Hillestad and Carrillo (ref 1), 

\{t) is given on page 9 as a convolution integral: ' 

t 
Eq  (1) X(t)    =/m(s)  F(s,t)  ds 

0 

where 

F(s,t) is the probability that a part going into 
service at time s is still in service at time t. 
In the calculations we discuss, we will take 
F(s,t)=F{t-s), i.e., it will depend only on the ;. 
time difference. This is not a limitation, for 
we may still have a different function for each t. 

m(s) is the demand intensity function at time s, 
discussed more fully later. 



The integral of eq (1) can be approximated by a sum: 

s=t 
Eq (2)    \(t) = Z m(s) F(s,t) 

s=o 

where m(s) and F{s,t) are written as discrete functions. 

In the case at hand, the discrete summed form, although it looks only at 

daily intervals, is as adequate as our knowledge of the functions 

F(s,t) and m(s). 

It is a simple matter to define F(s,t) and m(s) as vectors of values 

for discrete time intervals. The "tabular" definitions of the functions 

allow full and easy access to all kinds of functions. The vector scalar 

products of eq (2) are easily computed to obtain values of \[t)  for each 

value of t. The computational process is described further in 

Appendix B. 

The Demand Intensity Function 

Under Dyna-METRIC assumptions, demand for the ith part on day s is 

characterized by a Poisson distribution having expected value m{s). 

Since we are working with discrete one-day intervals, m(s) is defined by 

a string of discrete values. 

Letting: 

D^- = demands per flying hour for the i^^ part, a constant; 

F = flying hours per sortie, a constant; 

N = number of aircraft in the flying unit, a constant; 

R(s) = daily sortie rate, a function of time; and 



QPA = quantity per aircraft (eog., an aircraft has 2 landing 

gears), a constant; 

then 

Eq (3) ni(s)  = D^-   • F  °  N  •  R(s)    X    QPA 

R(s) may be any feasible function of time, but in our calculations we 

typically take it to have one "initial" value appropriate to peacetime 

training,  followed by a "surge" value for a certain number of days, and 

then it reverts to some "final" value. 

Figure 2    Typical  Sortie Rate Function 
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Clearly, the shape of m(s) 1s determined by the shape of R(s) and its 

value is determined by the application of the scaling factor D^-'F'N-QPA 

which depends on the mission of the unit (through F), the size of the 

unit (through N), and the part in question (through D^-). Actually, all 

of the factors could be treated as time-dependent; but since it is a 

trivial extension, it is not set forth explicitly. 

We adopt the convention that day "0" is the end of the "initial" 

period (the end of "peacetime" rates). Negative indexes then pertain '. 

to peacetime flying, positive ones to combat surges. This convention 

affects the limits of summation of eq (2) in only a trivial way. 

The Service Time Distribution 

The service-time distribution or repair function, F(t-s), can be any 

form which adequately represents the service process. It is required only 

that F(t-s) satisfy the usual conditions imposed on any distribution 

function: Namely, it must approach 1.0 as t-s approaches zero, i.e., the 

part is sure to be unrepaired at the moment it enters repair. Also, F(t-s) 

must approach zero monotonically as (t-s) becomes very large; i.e., after a 

long enough time, the probability that part is still in service becomes 

vanishingly small. 

The repair function is defined by a string of numbers which offers 

the obvious advantage of permitting easy exploration of functions that may 

not be easy to express in mathematical form. Sensitivity analysis con- 

cerning assumed forms of functions thus becomes very easy. 



Consequently, F(t-s) can be exponential-like: 
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(Note:    In portraying these functions, "t" represents now, and "t-s", a 
time s units in the past, is the point at which a part entered repair.) 

Or we can add a constant "admin delay" time, d, before the part starts the 
repair process: •  * 
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Or, if we like, we can look at a constant repair time: 

For ease of representation, the functions are drawn as continuous but are 

nevertheless discrete as previously noted. 

Clearly, a variety of repair functions can be investigated. In this 

report, a single form is used for all NSNs (i.e.. National Stock Number) 

but the specific values of the parameters are adjusted by the data char- 

acterizing each one. The form used for illustration herein is that of the 

last graphic, the constant repair time. 

Input Data 

The data which we use for this report are synthetic and were chosen 

only for illustration although they are reasonably typical. 

The number of parts used for illustration are limited so they will fit 

easily on a single page. We look only at 42 NSNs, whereas a full set of 

Line Replaceable Units (LRUs) for a fighter aircraft could ordinarily 

number several hundred. In actuality, initial computational scans on a set 

of real-world LRUs could permit us to focus on a small subset of "critical" 

U 



items which largely detennine the overall system performance. The MSNs in 

the present illustrative set of 42 could represent fuch a "critical" group. 

The data describing the individual LRUs are estimates of:      .; 

• Demands per flying hour 

• Not Repaired This Station (NRTS) rate at base 

• Repair cycle time at base 

;^     t Administrative delay time and round trip shipping time to 
the Centralized Intermediate Repair Facility (CIRF) 

• NRTS rate at CIRF 

f Repair cycle time at CIRF 

• Order and ship time from depot - 

• Quantity per application 

We also specify: 

F = 1.2 hours per sortie 

N = 48 aircraft 

j 0.6 for peacetime (per calendar day, 
I    not flying day) 

Sortie rate, R(s) =^ 3.0 for first 10 days of combat 

/ 1.0 thereafter. 

which establishes the flying program as a function of time. 

12 



III. Description of Model Inputs and Outputs 

and Their Interpretation 

Description of Stock Assets" 

(Matrix 1) 

Examples of model inputs and outputs (matrices) are contained in 

companion Volume II of this report and should be examined while reading the 

text. 

Our broad goal in running the Vector model is to make evident how each 

NSN contributes to the expected NMCS (not mission capable for supply) rate 

for the fleet. 

It is trite to observe that NMCS depends upon the stock level for each 

NSN, but that observation nevertheless serves to introduce the notion that 

we must describe the stock asset position before we can calculate NMCS. In 

our calculations we define the flying unit's stock assets by a column vector 

which has as entries the number of items stocked for each NSN. We also 

arrange to store several different stock vectors side by side, each describ- 

ing a different stock position, for we will want to explore what happens 

under different stock options. An example is given by Matrix 1. 

Individual vectors can be used to represent different situations: 

• A zero vector means we have no stock at al1. 

t The authorized peacetime stock is represented by one 
vector. 

• The actual peacetime stock is given by yet another vector. 

• Still another stock option is "Peacetime Operating Stock 
(POS) plus War Readiness Materiel (WRM) stocks." This 
is the appropriate one to use when a unit may draw freely 
from its total stock. 

13 



Such vectors can also be used to represent time changes 
in stock levels as could occur when a c'eploying TAC unit 
brings stock with it. A distinct vector would be asso- 
ciated with each period during which the stock was 
"constant." 

etc. 

Note that "stock," as we use the term, refers to the total asset, not to 
where it is located. It consists of that which is in the pipeline and that 

which is "on the shelf," not just one or the other. 

Evaluating the Sum 

The details of the computations involved in evaluating eq (2) which 
yield \{t)  (page 7) are covered in Appendix B. Several points, however, are 
worth brief mention here before we look at the model's outputs of Mt). 

• There are three repair pipelines in PACAF — a 
base repair cycle, a Centralized Intermediate 
Repair (CIRF) repair cycle, and a depot repair 
cycle. In which of these pipelines an individual 
part finds itself depends partly on its character- 
istics, i.e., some parts may be repaired at the 
base depot only, some at the CIRF and depot only, 
etc., and partly on the probabilities that describe 
repair line performance in accordance with the 
input data describing the part» 

• Accordingly, we will be interested in a X-\{t)  for 
each of three pipelines as well as one for the sum 
[\(t)] of all three pipelines. 

• We also must be careful that suffi£iently long 
"tails" have been included in the F(s,t) vectors 
augmented by zeros if required, so that peacetime 
operations are in "steady state" before looking at 
the transient behavior. We display x(t) on four 
peacetime days (-6,-4,-2, and 0) to check that the 
lengths of the vectors used in evaluating the convo- 
lution integral were sufficiently long to guarantee 
a stationary state, which is evidenced by an unchang- 
ing value of X(t). 

14 



The Matrix Display of \(t) 

(Matrices 2 through 5) 

The next four printouts display the Xi{t) matrices: one for the 

base repair loop, one for the CIRF loop, one for the depot loop, and one for 

the sum of the three basic loops. 

The meaning of most of these displays is self-evident from the preced- 

ing text, but there are a few areas worth singling out. Some numbers are 

echoes from the input data base. "QPA" is quantity per aircraft. "Time" 

is the expected repair time for that NSN in that particular repair loop. 

"PCT" indicates the probability that the part will be repaired in that loop. 

The matrices showing x.i(t) for each of the repair loops may be of 

some interest if we want to pursue questions relating to repair time of 

specific NSNs. More often, we are interested in the overall picture which 

is shown by Matrix 5, the total expected value of part type i in all repair 

cycles. 

At its most primitive level. Matrix 5 gives an indication of the 

average number of each NSN in the repair cycle as a function of time. The 

expected values are constant for the unchanging peacetime program through 

day 0, rise during the period of the big surge through day 10, and 

usually show recovery via declining pipeline averages thereafter. Parts 

that go mostly to the depot may not show recovery until after the depot 

cycle time has transpired. 

Since we know from the fundamental theorem that the individual and the 

summed repair line contents follow Poisson distributions, we also know how 

to calculate the probabilities of finding specific numbers of parts in 

repair. This matrix, then, contains all of the basic statistical informa- 

tion even if it doesn't show it all. All else that can be done is to use 

the \(t)  information in various probability calculations which relate 

the condition of the aircraft fleet to the "expected parts in repair," the 

stock assets available, and the cannibalization policy in effect. 

We now turn to the task of elaborating the implications of the 'V(t]'s. 

15 



Probability Of A Stock Outage 

(Matrices 6 and 7) 

The probability of a stock outage, i.e., a "backorder," for a parti- 

cular NSN (i.e., part type) is given by the probability that the number 

in repair exceeds the stock asset level. Such an outage, therefore, 

generates a NMCS condition if we do not have a part to replace the one 

removed from the aircraft. The NMCS condition will persist until a part 

returns from repair (or we cannibalize it from another aircraft). 

A caveat is appropriate at this point. We are aware that not every 

stock outage makes an aircraft go NMCS; it may be partially mission capable 

even with the part missing. For convenience, however, we use NMCS as 

a shorthand version of the more accurate form "Not Fully Mission Capable- 

Supply." 

With the information now at hand, it is easy to calculate the prob- 

ability of an outage for each NSN. The first step is to calculate the . 

probability that there are k parts in repair, for k = 0, 1, 2...etc. This 

is immediately available since we know the mean value (\-{(t) from 

Matrix 5) and that numbers in repair are Poisson distributed. A trivial 

summing process then gives the probability of k-or-fewer parts in repair. 

The calculated results are printed out in Matrix 6 for day 0. A separate 

matrix can be produced for any chosen day. 

Although Matrix 6 does not yet bring in the stock assets, the pattern 

is beginning to emerge: Obviously we would like to have sufficient assets 

to cover the likely levels of parts in repairs. In Matrix 6, for instance, 

we look at day 0. For NSN-3, the demand and repair time data are such 

that there is a 0.99 probability that the number in repair is 5 or fewer. 

If we have five units as our asset level, we will be covered 99% of the 

time. Indeed, the column labeled "SL" tabulates the stock asset position 

needed to cover up to the 0.99 level for each part. It is a good first- 

cut estimate of what we need in stock assets on that day. 

16 



The first-time reader may think that 0.99 is a high level  of aspira- 
tion.    In truth, it is not.    When there are, say, 300 NSNs, all of which are 

needed, each must have a high probability of being available when demanded 
if the fleet is to be in good shape.    For instance, if each of the 300 parts 
had a 0.01 probability of nonavailability given a demand, then three parts 
on the average would be unavailable.    Under a no-cannibalization policy, 
3 aircraft would be NMCS.    Or if 100% cannibalization were permitted, 
we would likely be able to consolidate all the shortages into one aircraft 
and the NMCS would be 1.   This will  become more graphic shortly.    If for 
some applications, critical values other than 0.99 are needed, it may 

be easily changed. 

Matrix 7 adjusts Matrix 6 to account for a designated stock option con- 
tained in the Stock Option Matrix.    It gives the probability of k-or-fewer 

backorders for the designated stock option. 

A "backorder" is defined as a part entering repair for which there 
is no covering stock.    A backorder implies a stock outage and vice versa. 

The probability of k-or-fewer backorders is obtained from Matrix 6 

merely by shifting each row to the left a number of elements equal  to the 
associated stock asset.    The column labeled "SL" is redefined here as being 

the stock to be added to the asset position to raise the probability of 
no outage to the 0.99 level.    "SL" functions here as a shortage indicator. 

The rightmost entry for each NSN shows the expected back orders 

(EBO) for that NSN and stock option.    It, too, is an occasionally useful 
measure of the adequacy of the stock option. 

17 



Three additional lines have been labeled and added at the bottom of 

the page: 

Pr(NMCS.LE.K), the probability that NMCS is less than 

or equal to k; 

PR(NMCS=k), the probability that NMCS is exactly 

equal to k; and 

AVG NMCS, the expected value of NMCS. 

These are computed for a policy of 100% cannibalization, i.eo, all holes 

are consolidated into the fewest possible number of aircraft. 

For 100% cannibalization, Pr{NMCS.LE.K) is given by the product of the 

values in the column above it. (Note: If QPA is not equal to 1, the factor 

in the product is taken from column k = [(k-l)xQPA + 1] for k > 0. The 

column product will be close to unity only when the value of each entry is 

close to unity. Merely by scanning the column, the "troublemakers" stand 

out as those which are significantly less than 1.0. Visually, they are the 

ones that extend well to the right on each line. 

The Pr(NMCS=k) is obtained from the difference of two successive entries: 

Eq (4)    Pr(NMCS=k) = Pr{NMCS.LE.k) - Pr{NMCS.LE.k-l) 

The average NMCS is k times Pr{NMCS=k)  summed over all k >_0. 

The distributions of NMCS in either form are quite useful in helping 

us visualize the spread around either the average (5.35) or most probable 

(5.0) NMCS. 

Finally, the last entry on the page is "Expected Backorders," which 

is the sum of the individual NSN EBOs.    In the example given by Matrix 7, 

NSN 33 (with a QPA of 4) contributes a large portion of the total  EBO. 
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The "SL" value of 24 similarly shows that the initial stock quantity 

(which is zero in Matrix 1) needs a lot of augmentation. Because the 

QPA = 4, however, it does not drive the average NMCS much above 5. 

The expected NMCS for this part alone would be 3.8 (15.34 ^  4). 

This matrix contains the most important and useful data for assess- 

ing a stock position in toto and part by part. The reader should assure 

that he has a thorough grasp of the portrayed information. 

The average NMCS (100% Cann) and expected backorders are overall 

indicators of the stock option. A glance at the "SL" column gives a 

quick indication of which parts are the main contributors to "holes" or 

NMCS and how much stock is needed to remedy it. If necessary, one can 

track down through the preceding matrices the various demand and repair 

characteristics that cause the problem. 

We will return to this type display after a short side excursion. 

EBOs and Distribution of Holes 

(Matrix 8) 

The expected NMCS (100% cann) is a useful statistic for describing the 

condition of the fleet under an extreme cannibalization policy. Given that 

policy, it distinguishes fairly well between a poor stock position and a 

good one. It does not, however, tell us very much about the total number 

of holes or how many holes had to be moved (by canning) to collect them 

into the smallest number of aircraft displayed by NMCS (100% cann). 

Neither this model nor Dyna-METRIC tells us how many canns had to be done, 

but they can tell us about the distribution of holes after 100% canning. 

The expected number of holes is the same as the sum of the expected 

backorders. Summaries of the EBOs for each NSN, each stock option and each 

time period are shown at the end of each page and at the end of the data 

annex in the same form as the stock option matrix. A rank-ordered list by 

EBOs is also a user option. 
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The distribution of the holes from all NSNs can be calculated as set 

forth in Appendix C.    In addition to Matrix 8, a fev examples are shown at 

the end of the data annex.    The distribution of holes characteristically 

has a wide spread which means that considerable variation from the expected 

value is likely. 

By comparing the expected number of holes and the expected hJMCS (100%), 

one gets an idea of how many holes have to be shoved into the number of 

NMCS (100%) aircraft, on the average, by cannibalization.    (The stock 

option leading to Matrix 7 gives about 8.4 holes in each of the 5+ NMCS 

aircraft.)    It is at best a gross indication and does not permit an esti- 

mate of, for instance, "daily canns."    The problem of estimating "daily 

canns" under various canning policies is a large subject in itself and will 

be treated at considerable length in another paper of this series. 

If time-dependent pipeline models gave us a time history of a single 

flying unit, we could say more about the canning process.    They do not do 

that, however, except under conditions that are not of much interest. 

Since that is the case, the reader may well ask:    "What do these statistics 

describe, then, if not the time-track of a single unit?" 

A simple answer is the following:    To interpret Dyna-METRIC type 

statistics, we imagine a collection of identical  flying units each follow- 

ing its own time track.    They are identical  insofar as they all are driven 

by the same assumptions and statistical  distributions; they differ in the 

effect the randomness of events (demands, repairs, etc.) has on each.    The 

statistics are calculated across the ensemble of units at a particular 

point in time, not for an individual unit across a span of time.    In short, 

the statistics describe the ensemble, not the time behavior of a single 

specific unit.    For many questions dealing with specific flying unit beha- 

vior from one day to the next, this theory falls short of what is needed. 

Offsetting those "disappointments" are the many useful  planning applica- 

tions of average behavior. 
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Peacetime Stock Options 

(Matrices 7-12) '   ■ 

Matrices 7 and 9 through 13 show the details of performance for stock 

options 1 through 6. (The reader should study them before continuing.) 

The major indicators are extracted and shown in Table 1 below. With 

the exception of option 4, each indicates an overall improvement in per- 

formance over its predecessor. Option 5 or 6 obviously would be great 

in peacetime, but they are really based on stock levels which are appro- 

priate to the sums of WRM and POS levels and should produce good peacetime 

performance. 

Table 1 

Status on Day 0 (Peacetime) 

Stock Option 

1 

2 

3 

4 

5 

6 

Average NMCS Expected Backorders 

5.35 44.98 

2.29 8.69 

1.00 1.56 

2.95 10.42 

0.15 0.15 

0.01 0.01 

For real data, we could dwell at length on the differences between 

options. Here, where our interest is in illustrating content, we give 

them only a little attention. (See Matrix 1 for stock option vectors.) 

• Option 2 effects a general improvement by augmenting some 
of the worst offender NSNs. (Compare SL columns.) 
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0 Option 3 adds still more stock so that shortages, where 
they occur, are generally ones and twos spread across 
all NSNs. (sSL^- = 33 needed items.) 

• Option 4 (ESLJ = 43) leaves the shortages in a rela- 
tively few NSNs (note particularly NSN 33) to make the 
well recognized point that the concentration of shortages 
is as important as the total number. 

• Options 5 and 5 are more properly wartime stock levels 
than peacetime ones as will be seen in the next section, 
but they obviously would give very good performance if 
all that stock were made available in peacetime. 

Condition of the Fleet During the Big Surge 

(Matrices 14 - 20) 

The preceding data were all computed from \i{0) and, therefore, 

pertain on day zero, or to "peacetime operations." Of course, the compu- 

ter programs permit us to look at any day and any stock option we wish, 

so we now turn to day 10, the end of the major surge effort. At day 10 

the supply position will be about as bad as it will get. 

Matrices 14 through 20 portray the performance of the various stock 

options. (The reader should look at them before continuing the text.) 

Summary data are shown in Table 2.    . 
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Table 2 

Status on Day 10 

(After 10 days of 3.0 surge) 

Stock Option Average NMCS Expected Backorders 

1 16.31 214.19 

2 15.60 142.05 

3 19.74 130.81 

4 9.75 76.62 

5 5,40 20.41 

i 7.86 18.15 

The peacetime options (1» 2, or 3) are probably not feasible. Indeed, 

the model operates to produce demands as if the flying program were 

carried out, but it may not be possible to fly 144 sorties per day 

(48 X 3.0) with only 28 to 32 aircraft non-NMCS. 

Option 4 performed poorer than option 3 during peacetime but signi- 

ficantly outperforms it here. (Surprise?) By looking at the appropri- 

ate matrices (17 and 18), we see that for a surge, NSN 7 was grossly 

understocked (SL = 57) in option 3, much less so (SL = 24) in option 4. 

In peacetime, NSN 7 was available in reasonably adequate quantities for 

both options (Matrix 10, SL=2 for option 3; Matrix 11, SL=0 for option 4; 

the actual stock levels are: 23 for option 3 and 56 for option 4). 

Here again, we sneakily buried a hook in the options to emphasize that 

a single NSN can cause disastrous drops in performance. This clearly 

demonstrates that "fill rate" (fraction of total parts available out of 

total required) is a dangerous indicator of WRM status. 

Option 5 looks better than option 6 on day 10 (but neither looks 

good). Since the expected backorders are higher for #5 than for #6, we 

suspect that #6 has less evenly distributed shortages. From Matrices 

19 and 20, the suspicion is confirmed: NSN #7 is again the culprit. 
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We note also 1n option 5, however* that there are two critical items: 

NSN 7 and NSN 33. The second one (or the first, if you prefer, since they 

are somewhat symmetrical) tends to mask the effect of the other when 

looking at the NMCS (100% cann) indicator. Each of the NMCS group for this 

option would tend to have two holes rather than just one. If we wanted 

to improve option 5, we would need to add stock in both bins. 

Although it is not clear which option is "better" than the other, it 

is becoming clear that they are different: #6 has one dominant critical 

part while #5 has two dominant critical parts. Looking at the full 

NMCS (100% cann) distribution permits us to emphasize that we are using 

"expectations" to describe something that in the actual event may be 

quite different; it also shows how the "two-versus-one" aspect of criti- 

cal ity (and its extension to cases of "many-versus-few") influences what 

we are apt to see in a real-world trial. 

Both of the frequency functions in Figure 2 are characterized by 

rather significant spreads. (A statistician would say that the standard 

deviations are relatively large.) In both cases, were we to have a real- 

world trial, it would be quite likely we would observe some value other 

than the expectation (i.e., mean). Although option 6 would, on the 

Figure 3 Distributions of NMCS Aircraft For Stock Options 5 and 6 

(Surge Day 10) 
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average, perforin poorer than option 5, it could turn out better in any 

one trial!    Option 5 is more "peaked" and less "spread out," due to the 

combined effects of the two critical  parts.    The more parts with nearly 

the same criticality, the sharper the peak. 

Condition of the Fleet During Recovery 

(Matrices 22 - 27) 

On the 11th day, the sortie rate was dropped to 1.00 and kept there 

thereafter.    See Table 3. 

Table 3 

Status on Days 0, 10, and 30 

Day 0 Day 10        Day 30 

Stock NMCS* NMCS* NMCS* 

Option A/C EBO A/C EBO A/C EBO 

1 5.35 44.98 16.31 214.19 13.35 173.12 

2 2.29 8.69 15.60 142.05 10.12 101.93 

3 1.00 1.56 19.74 130.81 8.58 81.81 

4 2.95 10.42 9.75 76.62 9.64 73.31 

5 0.15 0.15 5.40 20.41 4.44 17.37 

5 0.01 0.01 7.86 18.15 1.94 3.50 

* 100% cannibalization 

When we look at day 30, we see very different recoveries for the 

various options.    Option #5 does not recover as well  as #6, for instance. 

Looking at Matrix 25, we see this is due to NSN 33 (SL = 21) which was 

masked at the 10-day mark by NSN 7.    NSN 7 was also the dominant reason 

for option 6's poor performance at the 10-day mark.    On reflection, then. 
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it is apparent that NSN 7 recovers faster than NSN 33. Looking back at 

Matrices 2» 3, and 4 we find the data shown in Table 4 below: 

Table 4 • 

Probabilities of Repair and Repair Times 

Prob of Prob of        Prob of 

Base    Repair  CIRF    Repair  Depot   Repair 

Repair  Time    Repair  Time   Repair  Time 

NSN 7      .85     8 days  0      -     .15     31.5 days 

NSN 33      .27     5 days  0      -     .73     31.5 days 

Thus, NSN 33, most of which are repaired at the depot, has not begun to 

recover by day 30; but NSN 7 with most of its repair accomplished at the 

base recovers rather quickly. 

Matrix 5 which shows the \{t) vectors for the whole pipeline as a 

function of time shows the behavior quite clearly. The expected number 

of NSN 33 grows quickly during the 10-day surge to 36.8, then slowly con- 

tinues to increase to 40.1 on day 30. The expected number of NSN 7 in 

repair peaks on day 10 at 61.9, then drops to a low of 31.7 on day 18 and 

(due to the fraction that goes to the depot) slowly climbs to 33.4 on 

day 30. 

We would, of course, expect a fast recovery for both parts during the 

period between 30 and 40 days because the large quantities that went to 

the depot during the initial 10 days would begin to return. 

Influence of Different Forms of the Repair Function 

The matrices discussed in the preceding part of this note are based 

on constant repair functions with constant shipping times. The parameters 
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were set equal  to the average time-of-repair observed for each NSM and for 

the repair pipeline being considered.    Alternatively, we could have used 

exponential  distributions for both the repair function and shipping time, 

a form built into the Rand Dyna-METRIC programs. 

Under steady-state conditions. Palm's theorem says that the form of 

the repair distribution is immaterial, only the mean value is influential. 

But such is definitely not true for transient conditions; there,the form 

of the distribution can have an impact on the stock performance under some 

conditions.    In a later report, we will  explore what influence the differ- 

ent repair functions have, for that is a moderately complex story in 

itself and is better treated with real-world data inputs. 
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IV. Summary 

The matrix presentations of supply performance which we have described 

herein should make clear, on the one hand, just how complicated the overall 

logistics problem really is! On the other hand, the presentations also 

make it evident that we are getting into an ever-better position to 

grapple with those complexities in practical and useful ways: 

A moderately aomptex stoahastia model is used to  "avunah" a 

ton of data,  on hundreds of LRUs,  over an extended period of 

time spanning various surges in sortie production and time- 

dependent stock levels,  incorporating several repair pipelines 

which may use different kinds of functions to describe the 

repair process  — and then the outputs are presented in ways 

interpretable in terms of the unit's overall ability to produce 

combat sorties. 

Throughout this paper, we have hinted at possible uses of the model. 

There are so many we will not try to catalog them here. We have some very 

clear notions about immediate applications: 

• A thorough factoring of the F-15 spares position both in 

peacetime and wartime 

• An offshoot based on these underlying notions which will 

explore in detail several cannibalization policies in our 

F-15 unit 

• An overall assessment of our F-4 wartime capabilities 

• Explorations (along the way) of the sensitivity of the model 

results to the uncertainties imbedded in the real-world data 

base 
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While building the data base is painfully slow, the computer crunches 

it quickly. To produce the matrix outputs in the data annex took about six 

minutes of computer core time. Moreover, the basic X(t) matrix that embod- 

ies much of the calculational time needs to be computed only once for a given 

set of demand and repair functions<> It may then be stored on disk and used 

for all stock option explorations. Since the fundamental repair data base 

is only occasionally changed, this is a very fast computational model. 

It consumes a lot of paper, but it doesn't use much computer time. 
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Appendix A 

"The Importance of the "Poisson Property" 

It IS indeed fortunate that we can usually represent spare part 

"demands" by a Poisson process, one in which the demands per unit time 

vary stochastically according to a Poisson distribution with expecta- 

tion m. The Poisson distribution has a marvelous property: It repro- 

duces itself. The property is demonstrated in most statistic text books 

and frequently expressed as a theorem: 

Theorem 

If Sp is a sum of n independent random Poisson variates, x-j, having 

means, m-j, then Sp is a Poisson variate with expectation, Em-,-. 

Dr. Gordon Crawford's original proof of the time-dependent Palm's 

theorem which we quote in Appendix B calls on that theorem several times. 

The Poisson property also provides the justification for "factoring" 

a many-loop repair process into individual  loop processes for calcula- 

tions, then recombining them at the end.    To illustrate: 

Consider the Poisson demands for part i on day k 
characterized by the expected value m.j(k).  Imagine 
now an additional  random process, independent of 
the demands themselves, which will  operate on each 
realized demand so as to put it in one of three 
bins labeled A, B, and C according to probabilities 
P^, Pg, and Pc-    Under this process, the contents 
of A, B, and C on day k will be Poisson variates 
with means m(k)P;\, m(k)PR, and mCk)?^.    Now, we 
complete the picture by letting A be the base 
repair cycle, B the CIRF repair cycle, and C the 
depot repair cycle.    Although each has a different 
repair function and demand function, we know from 
the time-dependent Palm's theorem that the contents 
on day k are Poisson variates and we know how to 
compute the expected value.    The contents of each 
repair path are, moreover,  statistically indepen- 
dent so the Poisson property tells us that the 
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totality of parts in the repair process 1s a 
Polsson variate whose expectation 1s the sum of 
the expectations for each repair path. 

When we can meet the requirements of Independent Polsson demands, we 

are in good shape. Indeed, the model at hand 1s very powerful: We do 

simple algebraic calculations on expected values and end up knowing all of 

the distributional behavior as well! 

But there are model extensions we would like to explore which violate 

the all-important assumption of statistical independence. First and 

probably foremost is the "indenture relationship" between LRUs and SRUs. 

If the repair function of the LRUs is made to depend upon the stock of 

SRUs which in turn is a function of past demands, we clearly have 

"independence" problems and our useful appeal to the Poisson property is 

no longer valid. Similarly, if the repair function is permitted to 

depend on the demands themselves (as would occur if the CIRF repair time 

for each part becomes longer when demands increase), then we lose indepen- 

dence and our simple model is no longer valid. To retain it, we must 

pretend that the CIRF expands its capability at just the right rate to 

guarantee repair function is not dependent on the number of parts in 

repair. This can be met by having a repair process with an infinite 

number of servers, each of which has the postulated repair probability 

function. That is not apt to be the case. 
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Appendix B 

Evaluating the Expected Number in Repair 

In the main body of the report we cited the RAND formulation of the 

time-dependent Palm's theorem which is in a very general form, and immedi- 

ately thereafter wrote down a discrete form with a sum replacing the 

integral. It is instructive to start from scratch in this appendix by 

reproducing a portion of a previous OA report (ref 2) written by Dr. Gordon 

Crawford who set down one of the earlier proofs of the extension to 

Palm's theorem. We have changed his labeling convention to that used in 

this paper. 

To fix ideas and conventions, let us assume that if an 
item has a repair/replace time of, say, two days, and 
if it fails on day i, then it is out of service on 
day i + 1 and comes back in service on day i + 2. In 
this case, we say a "due-in" existed on days i and i + 1. 
(Note: This convention assumes all accounting actions 
occur at the end of each day.) 

To examine the question of how many parts are needed 
to support a sortie surge, we formulate a model which 
allows a calculation of the distribution of the number 
of due-ins on each day of a war. 

We begin by assuming that the number of demands on 
day i is a Poisson random variable (r.v.) with mean 
m(i), m(i) >_0, i = 1, 2,.... It is this feature of a 
changing mean demand rate that characterizes the increas- 
ing tempo of operations associated with the initiation 
of combat. 

Suppose repair times are constant and equal to some 
integer ng, ng >_ 1. If n© = 1 then the number of due- 
ins on day k is the number of demands on day k, that 
is, the number of due-ins is a Poisson random variable 
(r.v.) with mean m(k). If no = 2 the number of 
due-ins on day k is a Poisson r.v. with mean 
m(k-l) + m(k). 
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More generally, but by the same reasoning. If repair 
time is constant and equals ng, the number of due- 
ins on day k is a Poisson r.v. with mear* 

k 
i)     Z fn(J) 

j=k-no+l 

If repair times are not fixed, as in the preceding, 
but more generally are integer-valued random 
variables and if they are independent identically 
distributed and independent of demands and if they 
assume the values n^ with probability p-j, i = 1, 2, 
..., then the number of demands on day j with repair 
time = n-j is a Poisson r.v. with mean Pim(j). 
Moreover, this r.v. is independent of the number of 
demands on day j with repair time = n^,, m 5^ i (which 
in turn is a Poisson r.v. with mean Pnfi(j))' 

It follows from i) above that the number of due-ins 
on day k with repair time n^ is the sum of n^ 
independent Poisson r.v.s and hence is a Poisson 
r.v. with mean 

k 
Z  Pim{j) 
j=k-ni-+l 

By virtue of the above-mentioned independence, we 
have shown that the total number of due-ins on day k 
is a Poisson r.v. with mean 

00  k 

ii)     PI(k) = z  PiS m(j) 
i=l j=k-ni+l 

This result is a special case of a more general  form 
of Palm's Theorem: 

Palm's Theorem 

If M is a non-negative function such that the number 
of demands in the time interval   (t^, t2] is a 
Poisson random variable with the mean M(t2) - MCt^), 
and if repair times are independent identically 
distributed random variables with arbitrary distribu- 
tion function F, - 

F(x)  = Pr [repair time < x ], 0 < x < +=, 

*This result and some of its ramifications were suggested to us by 
T. Lippiatt of the Rand Corporation.  
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and if repair times are independent of demands, then 
the number of due-ins at time t is a Poisson random 
variable with mean PI(t), where 

iii)    Pl(t) =/[M(t) - M(t-x)]dF(x). 
0 

The integral  iii) is the Lebesque-Stieltjes integral 
with respect to the measure induced by F. Monotoni- 
city of M (and hence integrability) follows from the 
understanding that the mean of a Poisson r.v. is 
non-negative. 

The proof of the generalized Palm's theorem, not reproduced here, then 
follows in Dr. Crawford's paper.    We are satisfied with his equation (ii) 
which is shown to be equivalent to our equation (2)  (page 7) as follows: 

Pl(k) = 
+ 
+ 
+ 

PI [m(k)] 
P2 [m(k-l) 
P3 [m(k-2) 
etc. 

m(k)] 
m(k-l) + m(k)] 

m(k)    Cpi 
+     m{k-l)[ 
+     m(k-2)C 
+     etc. 

P2 
P2 

+ P3 + 
+ P3 + 

P3 "^ 

m(k)    C 1 ] 
+     m(k-l)[l-pi ] 
+     m(k-2)[l-pi-p2] 
+     etc. 

m(k) F(k, k) 
+     m(k-l) F(k-1, k) 
+     m(k-2) r(k-2, k) 
+     etc. 

where 
F = 1-F 

s=k s=t 
zm(s) F(s,k) = zm(s) TCs.t) 
s=0 s=0 
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Suppose today is day k.    The formula simply says that the number in 

repair at the end of today are those that arrive today, plus the fraction 

of those that arrived yesterday which have not been repaired, plus the 

fraction of those that arrived day before yesterday which have not been 

repaired, etc., on back until  either we're at the beginning of the process 

or we're sure that demands for that day and before have certainly been 

repaired. 

A graphical  illustration follows: 

Consider the figure below showing a demand vector and a repair function 

vector, F(s,t), so called "vectors" because they are defined by a list of 

numbers. 

Day t 
4- 

-7 -6 -S -4 -3 -2 -1 0    1 2 3 4 S 6 7 8 9 10 11 12 13 14 

.6 .6 .6 .6 .6 .6 .5 .6    3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 1. 1. 1. 1. 

21.72 

Day 

Demand Vector 

Repair Function 
Vector 

Contribution to Expected Value 
in Repair on Day 4 from 
Previous Days 

Expected Value in Repair 
on Day 4 
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The sortie rate vector (not shown) jumps to a surge level on day 1 

after a long initial period of steady-state training. On day 11, the 

sortie rate drops, but not as low as in peacetime. The mean demand 

vector m(t) for the part in question is proportional to this sortie rate 

vector, each part having its own characteristic "demands per flying 

hour." 

The repair function vector in this illustration is a simple one: 

There is a 3-day period (today, yesterday, and the day before) during 

which no parts are repaired (perhaps representing fixed transportation 

and processing times), a 10-day period during which there is a uniform 

probability of repair, and a still earlier period from which all demands 

will have been repaired. 

To find the "expected value in repair on day t" place the repair 

vector index on day t of the demand vector and sum the products. As t is 

changed, so will the "expected value in repair" in a way which should now 

be obvious. It should also be clear "how long a transient condition 

persists" or "what steady-state is reached", etc. The transient condition 

persists as long as the repair function spans any non-constant portion of 

the demand intensity function. 

There are no restrictions on admissible functions other than 

"statistical independence" and the repair vector satisfying the obvious 

conditions of probability distributions. We are otherwise free to choose 

any which suit our fancy. Those who may have pondered why Palm's theorem 

for the steady-state condition depends only on the mean repair time and not 

on the form of the repair distribution are now in a position to see clearly 

why it is true for the steady state and not true for time-dependent demands. 
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Appendix C 

A Note on Convolutions, Distributions of 

Holes and Expectations of Parts in Repair 

Convolutions (Following Feller, ref 3, p 214) 

Let X and Y be non-negative independent integral-value random 

variables (r.v.) with the probability distributions 

Pr{X=j} = {aj} and Pr{Y = j}={bj}. The event (X = j, Y = k) 

has probability ajb|(.    The sum S = x + y is a new r.v., and the event 

S = r is the union of the events: 

(X = 0, Y = r),  (X = 1. Y = r-1),  (X = 2, Y = r-2).   ...»  (X = r. Y = 0). 

These events are mutually exclusive, and therefore the distribution 

Cj. = Pr{S=r} is given by . 

C^ = aQb^ + a]^bj._]^ + agb^.g + ... + Sf-l'^l "*" ^r'^o* 

The above operation occurs frequently and is given a special name — 

"convolution of the sequence a with the sequence b " -- and a special 

notation. 

{C|^} = {a|^}*{b,^} 

When the sequences {ai^} and ib^}  are probability distributions 

the sequence {c^} is a probability distribution. 

Feller shows by use of generating functions that successive convolutions 

of sequences, for example: 

{e,^}= {ak}*{b,^}*{c,^}*{d,^} , 

enjoy associative and commutative properties—they can be formed in any order 

and in any groups. 
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From the definition, it follows that successive convolutions of 

sequences which represent probability distributions of r.v.'s yields 

the probability distribution of the sum of the r.v.'s. 

It should be noted that the sequences do not have to be of equal 

length and that the number of terms in a sequence resulting from a 

convolution is the sum of the numbers of terms in each of the convolution 

sequences. 

Note also (for computer programming purposes) that a convolution 

sequence can be visualized from the following matrix: 

ao     ai   32   . . .   aj^.i ak 

bo aobo  ^aibo ^a2bo ^. • .  /k-lbo akbo 

bl aobi   ^aibi ^a2bi . y.       a^.ibi a^bi 

b2 aob2   aib2 ^1^1    • • •   ak-lb2 akb2 
• :  / :  ../: • • 

bn 
*            • 

aobn   aibp  a2bn • • .   a|<_ibn akbn 

Each element of the sequence is generated by the diagonal sums with 

k equal to the sum of the subscripts. A computer program to perform 

convolutions is one which sums the diagonals and stores them as a 

labeled sequence. 

Distribution of Number of Holes 

Let Pr{holes (NSNi)=j} = {hj(i)} , that is {hj(i)} is the 

sequence that gives the probability distribution of holes for the i^h MSN. 
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From the preceding, the distribution of holes covered by two NSNs, say 

m and n, is given by: 

{hj(m)}*{hj(n)} . 

The distribution of total holes caued by all NSNs is 

{hj(l)}*{hj(2)}*{hj(3)}*... *{hj(N)} 

where N is the last stock number. 

Thus by taking successive convolutions of the distributions of holes 

for each HSU  with the preceding convolutions, the distribution of holes 

arising from all NSNs is generated. The process is easily carried out at 

the same time the matrix displays are calculated. 

Expectations of Parts in Repair 

In Appendix B, we derived the expected number of part i in repair on 

day t given the demand functions m(s) and repair function F(s,t): 

s=t 

\^{t)  = Z  m(s) F(s,t). 

3=0 

In the light of the previous discussion, it will be recognized that 

the sequence {X-j(t)} is given by the convolution of {m(s)} and {F(s,t)}. 
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